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1 Introduction

1.1 Research Objectives

The objective of this work is the development of adaptive control methods which can signif-
icantly improve closed-loop performance for a broad class of nonlinear flexible systems.

Towards this end, the goals were as follows:

1. Form a parametric model representing a broad class of nonlinear flexible systems.

2. Design a nonlinear controller based on the parametric model which provides desired
closed-loop performance if the parameters were known.

3. Identify the parameters of the system using measured data and use these estimates in
the controller.

4. Analyze the stability and performance properties of the complete adaptive system using
the method of averaging.

We concentrated most of our effort on items 1 and 2 as these turned out to be the most
difficult and challenging tasks. These must first be resolved in order to proceed to adaptation
(items 3 and 4).

In general, the final adaptive system d tscribed above fits into the generic adaptive scheme
depicted in Figure 1.

Estimated Parameters

Controller Parameter
Design Estimator

r __• Controlu • Plant

Figure 1: Adaptive control system with parameter estimator.

In this traditional adaptive control system, often referred to as the self-tuning-regulator
(STR), [2], the identified model is usually selected out of a model set with unknown pa-
rameters. The controller is designed as if the parameter estimates were in fact the correct
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parameters for describing the plant. In the ideal case it is assumed that there exist parame-
ters, which if known, would precisely account for the measured data. Even in this ideal case,
the transient errors between the identified model and the true system can be so large as to
completely disrupt performance. In the usual (non-ideal) case - the true system is not in
the model set - both unacceptable transient or asymptotic behavior can occur e.g., [1].

The above cited problems are well documented in the case of adaptive linear control,
i.e., when the adaptive parameters are held fixed the closed-loop system is linear. However,
the case considered here is adaptive nonlinear control, i.e., when the adaptive parameters
are held fixed the closed-loop system is nonlinear. Naturally the same problems will arise
in this case as in the adaptive linear case. Unfortunately many of the controller design and
parameter estimator issues have not been developed sufficiently as yet. In consequence, the
first step has been to resolve some of these issues.

1.2 Publications

See Appendices A and B.

1.3 Personnel

Dr. Robert Kosut and Dr. M. Giintekin Kabuli worked on the project during the reporting
period.

1.4 Interactions

We have had several interactions with Prof. Crawley and students at MIT, Prof. Rock of
Stanford, Prof. Sastry of Berkeley, and with Norm Coleman's group at ARDEC.
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2 Status of Research Effort

This section is divided into subsections each corresponding to the stated goals in Section 1.1.

2.1 Modeling the Plant

2.1.1 Nonlinear Feedback Interconnection

A large class of nonlinear systems can be modeled as depicted in the following block diagram.

U y

P(s)
V z

Figure 2: Plant model.

In this configuration P(s) is a transfer function matrix representing the linear-time-
invariant (LTI) part of the plant. The nonlinear part is represented by f(-), a memoryless
nonlinear function, which appears as a feedback interconnection. The variable y is the sensed
output and u is the control signal applied to the actuator inputs. The variables z and v are
not usually measured, although some of them may be contained in y. This model is capable
of representing all of the significant nonlinearities in large space structures.

The plant model can be described in both input-output as well as state space format.
The input-output description is

Y p U 11 P12 U

f P21 P22 V(]

Assuming P(s) is finite-dimensional, the state space format is:

x = Ax+Blu+B 2v
y = Cix + Diu±+ D12v

z = C 2 x + D2iu+ D22v

As a simple example of the model structure in Figure 2, consider the mechanical system
depicted in Figure 3.
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LAI
X1 :0

locA• -•

Figure 3: A flexible rotating system with backlash in the gear-train.

This system represents the case where tortional actuation is applied to a load through a

flexible gear-train. The gearing is shown to occur at the end of the flexible member, although

other combinations are certainly possible.

Neglecting any electronic dynamics, and assuming that the flexible rod is both uniform

and damped, the motion of the rigid body and first tortional "mode" for small angular

deflections can be approximated by the system of differential equations,

JM•iI = u + D(:2-:ii) + K(X2 - XI)

JGX2 = -v - 0(5, - ,)- g(X2 - XI)

JLX-3 = Nv

Z = X?2 -- NX3

v = f(z')

Y= X3

where u denotes the input applied torque, (X1, x 2 , X3) are angular deflections as indicated in

the figure, the load displacement y = X3 is the sensed output, z is the relative gear angle, and

f(.) is a memoryless nonlinearity arising from backlash in the gear train which depends on

a parameter 0. The constants are defined as follows: JM, JG, and JL are the motor, motor

gear, and load inertias, respectively, N is the gear ratio which is greater than one, and D, K

are the damping and stiffness, respectively, of the elastic rod.

In this example the transfer matrix P(s) has the block structure described before with

the scalar elements:

Ds+K
s 2 [JMJGS2 + (JM + JG)(Ds + K)]

N
P12 

=

S2 JL

P21  =Ds+K
S2 [JMJGS 2 + (JM + JG)(Ds + K)I

N 2  JMS2 +±Ds+K
S2 JL 5 2 [JMJGS2 + (JM + JG)(Ds + K)1
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A typical backlash nonlinearity is the cubic,

f(z) = bz 3  (1)

where b is a constant.

Although this model is based on the rotating elastic system with a motor, it bears great
similarities to nonlinear joint effects in LSS. Professor Crawley and colleagues from M.I.T.
have identified models of this type. A distinguishing feature of this type of model is the

large number of joints which need to be accounted. Referring to the model in Figure 2,
this means that the dimension of the vectors (z, v) is also very large, that is, the nonlinear

vector function f(z) has a dimension essentially equal to the number of joints with significant

nonlinearities. In addition, the linear part of the model, P(s), which is a matrix of transfer
functions, has a large number of states corresponding to the lightly damped flexible modes
of the structure.

2.1.2 Model Uncertainty and Adaptation

In our initial efforts it is assumed that the LTI part P(s) is known and the nonlinear function

f(z) depends on an unknown or uncertain parameters. For example, f(z) = 
9 z3 where 0 is

an unknown parameter. More generally,

f(z) = F(z)O

where G(z) is a known matrix of nonlinear functions and 0 is an unknown parameter vector.

The objective of adaptive control is to estimate 9 from the input-output measurements
(u, Y) and then adapt the controller to the estimate. The first step then is to devise a

nonlinear controller which depends on the parameter 9. The adaptive controller will be

identical but with 9 replaced by the adaptive estimate 9.

After forming the parameter adaptive algorithm or estimator, the plan is to analyze the

complete adaptive system using the classical method of averaging analysis [3, 4]. Under
previous AFOSR funding we refined the averaging method for application to linear flexible
systems [1]. In a feasibility study for nonlinear systems, also supported by AFOSR, we
used the Duffing oscillator to represent the nonlinear flexible system and adjusted a single
parameter in the controller. The results, reported in [9], were very encouraging. We observed
from simulations that the adaptive system performed very well, and achieved an almost
optimum final tuning of the controller parameter. Moreover, we discovered that the resulting
performance was directly predictable from the averaging analysis, and this, despite the fact

that the system states passed in and out of chaotic and multi-periodic attractors.

Before all this can be accomplished, we must first be able to control the nonlinear plant
when the parameters are known. This proved to be a major challenge, thus limiting our

efforts with adaptation. As the more interesting results concern the controller design, we

limit the remainder of the report to this part of the effort.
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2.2 Nonlinear Controller Design via Feedback Linearization

In this section we describe our efforts to develop a nonlinear controller based on the nonlinear
plant model just described. Our first assumption is that the plant parameters are known,
i.e., both P(s) and f(.) are known. Methods for direct control design of nonlinear plants
are few and far between without making additional assumptions. One such method, known
as feedback linearization has received considerable attention in recent years, e.g., [5]. This is
our starting point.

The basic idea is to find a nonlinear feedback system which transform the system states
to a new set of coordinates where the system appears linear.

To see how this approach works, suppose that all the elements of P(s) are strictly proper.
Then, the state-space description of the plant is becomes:

ý =- Ax + Biu + B2 f(z)

y = CJx

Z = C 2 x

If det(CiBi) : 0, that is, the inverse of CIB1 exists, then it is easy to show that the nonlinear
control,

U = UNL = (ClBl)-'[uL - C1 Ax - CiB 2 f(z)]

yields

S =UL

An interpretation is that the nonlinear control UNL, globally linearizes the plant system from
input UL to output y. In this case the feedback linearized plant is a single integrator which
is easy to control, e.g., let

UL = a(r - y)

where r is a reference, usually a set-point or constant. Thus, under feedback linearization
the output obeys the differential equation,

S= a(r- y)

Thus, for any positive constant a, if r is a constant, y(t) -4 r exponentially fast as t -- oc.

Moreover, for any bounded r, y is also bounded.

There are some difficulties with using this method:

1. Stability

Although the y-system is stable, the remaining states in x may not be bounded.

2. Implementation

The nonlinear feedback UNL depends on all the system states, x, which in general, are
not available.
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3. Robustness

Feedback linearization requires precise knowledge of the plant, i.e.,knowledge of P(s)
and f(-).

To illustrate the above issues we make the further simplification that y = z, i.e., the
nonlinear function acts directly on the measured output. Furthermore, the system states
can be partitioned so that

In this case the state description of the plant becomes,

= Ally + Al 2( + Bllu + Bi2f(y)

S= A21y + A22( B21u + B22 f(y)

The feedback linearizing control now becomes,

NL = Bj11[a(r - y) - Ally - A12( - B 21f(y)]

The closed-loop system is then,

= (r - y)

A 21Y + B 21Bjl[a(r - y) - Ally - B21f(y)] + B 22f(y) + [A22 - B 21B-l'A 12](

2.2.1 Stability

In our example, it is obvious that bounded r implies bounded y. Since the y-system is
decoupled from the (-system, C will also be bounded if and only if the eigenvalues of
A22 - B 21 B-llA 1 2 all have negative real parts. Although we have made many simplifying
assumptions, this test can be generalized [5].

2.2.2 Implementation

Since UNL depends on states which cannot be measured, an obvious solution is to reconstruct
these states from measurements with an observer network. Thus, an implementable feedback
linearizing control is,

UNL = (CIBl)-I[uL - ClA~i - ClB 2f(z)I

X = A+±Biu-B 2f(y)+L(y-CCli)

where L is chosen so that ALC is Hurwitz. To see that the resulting closed- loop system is
stable, define the state error

~def
X = X -X

Then,

y = a(r - y) + CAi

x = (A- LC):i

Since :(t) -- 0 exponentially fast, the system is stable.

7



2.2.3 Robustness

Robustness is more difficult to determine. For example, suppose that f(z) is an estimate of
f (z). The feedback linearizing control now becomes,

UNL - (ClBl)-'[UL - C1Ai - CiB 2f(z)]

x= A5c+Bju+B 2 f(y)+L(y-Ci:i)

where as before L is chosen so that ALC is Hurwitz. Again, it is convenient to introduce the
error variables,

def
X = X
- def
2/ = Y

where ý is the ideal output which satisfies,

Then, the closed-loop system is:

= (A -LC):i+ B2f

y = -ac+ CAE+CB2f

f = (y) - f(y), y + g

When f f we return to the previous case.

Although theoretical results, such as the Total Stability Theorem [1], indicate that the
above system has robustness properties, we have discovered from simulations that these
systems can be extremely sensitive to even small perturbations (see Appendix A) . This has
motivated us to find another means to apply feedback linearization. This effort is described
next.

2.2.4 Effect of Feedforward Control

The block diagram below shows a controller configuration which consists of a feedforward
signal generator and an inner feedback loop.

Observe that the feedforward controller copies the plant using the estimate f in place
of the unknown nonlinear function f. The feedforward block produces two signals, ý and
fL. To generate these we feedback linearize the "model" in the feedforward signal generator.
Since this is a model, all states are available and feedback linearization is ideal. The signal
f4 then tries to undo the effect of the unknown nonlinearity f in the actual plant. Any errors
will appear in the error signal • - y which is acted upon by the feedback controller K in the
inner loop. This controller, hopefully acting on small errors, can most likely be linear and
independent of errors between f and f.

8



±U YK + Y

f f

Figure 4: Nonlinear feedforward controller.

Using the previous example, the control is now:

u= (CiBi>)-'[a(r - )- c1m - CiB 2f(z)]
X= A±+ Bp ±+ B 2](M)

Y a(r -)

To examine the closed-loop system, it is again convenient to introduce the error variables,

- def
X = X-X
- def
y = Y

Here :i is the state of the feedforward signal generator rather than the estimator state. Hence,
i is bounded. As before ý is the ideal output. Now the closed-loop system is:

x = A +Bji+B 2f
•)= C15i

f = Ay)-fN), Y +

This system is very similar to that previously developed using feedback linearization with
an observer. However, we do not encounter the same difficulties with this system in the
simulations referred to in Appendix A

9



2.3 Towards a Nonlinear Control Design Based on Measured
Variables

Within the context of finite-dimensional linear time-invariant (LTI) feedback interconnec-
tions and LTI plants, full-order estimated state-feedback based design approaches are widely
used in control design problems. After suitable augmentations, the design problem is reduced

to the stabilization of B] (can be taken as strictly proper, without any loss of gen-to hestailzaioofC 0

erality) subject to a particular cost criterion (e.g., 712 and/or 14,o). The analytical and/or

numerical solutions to the associated optimization problem yields a state-feedback gain K
and an output-injection gain L , where the matrices (A-BK) and (A- LC) are both strictly

Hurwitz. The resulting controller is given by A-BK-LC L] . The relative ease of

solutions associated with such design problems stems from the inherent decomposition into
two sub-problems which can be dealt with separately. The estimation of the state and the
control law based on the ideal state are solved separately, and then the estimated state is
used instead of the true plant states in the control law. This two-step approach is referred
to as the separation principle.

Before proceeding with nonlinear control design methods and why the separation principle
fails in general, it is useful to observe the inherent properties that make the separation
principle work in the LTI setting. Consider the plant P : u F- y

S= Ax + Bu
y -- Cx

with a stabilizable pair (A,B) and a detectable pair (C,A) . If the plant state x were
available, a control of the form u = -Kx would solve the stabilization problem. Since
x is not available, an estimate i is constructed using (u,y) or perturbed versions thereof.
Consider the estimator E : (ue, ye) I- '. ,

-ý = (A-LC) -+ Bu, + Lye

where

u, + du u

y+dy Ye

where the exogenous inputs du and dy denote the unmeasured but bounded actuator and
sensor disturbances, respectively. Letting e, :- x - i:, and using the estimates in the control,
i.e., u, = -Ki , the closed-loop system is described by

- (A-BK)x + BKe. + Bd,
eý = (A-LC)e. + Bdu - Ldv

The properties that make the separation principle work, can be listed as follows:

10



1. For bounded (d, d,) , e,. is bounded. When (d,, d,) = 0, e --+ 0.

2. For bounded estimation error e. , x is bounded. As e, --* 0 , x -+ 0

Due to possibly persistently exciting disturbance (d,,, d4); e. is not expected to go to
zero. Hence, the state-feedback (in terms of x) must be robust to perturbations e. which
does not necessarily correspond to initial conditions mismatches in P and E .

For the sake of argument, suppose that one indeed has an asymptotic observer and a
"globally" asymptotically stabilizing full-state feedback law. Intuitively, for "small" errors
in the state-estimate, the separation principle based control design will be stabilizing. Thus,
after waiting "sufficiently long" for reliably reconstructing the states, one can use the esti-
mated states instead of the true states in the control. Apart from the nontrivial assumption
that such an asymptotic observer is available, another pitfall in such an argument is that
one may not be able to wait without a nominal bounded-input bounded-output (BIBO)-
stabilizing loop, since the plant may blow up before estimation errors are sufficiently small.
(e.g., = x 2 + u, u = 0, x(O) = xo > 0, x(t) = '-0-) . The existence of such a nominal
stabilizing loop is the same as requiring a control that robustly BIBO-stabilizes the plant,
although the desired performance may not be achieved.

Imposing the algebraic nonlinearities in the ordinary differential equations to be globally
Lipschitz in order to extend the appealing properties of linear vector fields, may be quite
restrictive. Nonlinearities in one coordinate system may be Lipschitz, whereas in an another
coordinate system they may not be. Consider

=l = X2 + f(X l )

x3 = U

Under the nonlinear transformation

6 = Xl

2 =-- X 2 + f(xl)6 3 X3 + (X2 + f(x1))f(')(x1)

the input to state map can be expressed in terms of

U3 = U + 2f(,2 )(4 J1)± 3f(I)(• 1 )

CO)

Even if f(.) is Lipschitz, a(.) is not.

For a given nonlinear plant P : u '-* y , consider the tracking problem: for a particular
class of reference signals r , determine a control

u = /(r,y)

11



such that y --* r and for a reasonable class of bounded disturbances, under the perturbed
control

S= du + IC(r,y+dy)

the closed-loop signals remain bounded. In other words, the closed-loop (see Figure 5) is
BIBO-stable (in the sense of a particular extended space) and achieves the desired tracking
when disturbances are zero.

du

Figure 5: Desired dynamic controller KI

We will focus on a particular class of single-input nonlinear plants which admit a finite-
dimensional state-space description of the form

- f W) + g(x)u

for which the State-Space Exact Linearization Problem [5] is solvable over WRn, i.e., control-
lability and involutivity conditions hold in IRW . For such plants, when states are available,
the origin can be rendered globally asymptotically stable. Moreover, when x is available for
feedback, the asymptotic tracking problem can be solved for any output that does not intro-
duce a nonminimum-phase zero dynamics. In the case where the output y to track r does
introduce a nonminimum-phase zero dynamics, one may be required to introduce dynamic
augmentation prior to full-state feedback. Such strong global results do rely on perfect state
measurement and render controller candidates as shown in Figure 6

r U y

Figure 6: Solvable design problem, dynamic controller Co; d, = 0, du = 0

Taking into account the control law in Figure 5 and the fact that one typically encounters
number of sensors much less than the number of states, one might dismiss the plant state
based control laws on the grounds that they are not implementable. As it is motivated by
the separation principle based control design, for classes of plants that admit asymptotic
observers or in the case of bounded state-estimation errors, the stability properties of the
control law with y = x in Figure 5 is of major importance (see also Figure 8).

Motivated by the separation principle based control design, a design approach can be
taken as follows:

12



"* Assumption : Imposing stability properties on (u,y) is equivalent to imposing them
on x . The plant 7 : u i-* y does not have any "hidden modes". The input output pair
(u, y) completely characterizes the internal dynamics.

"* Problem I : An estimator that allows the decoupling of the design problem (see
Figure 7). Recall from the motivating LTI setting, that the role of the estimator is to
guarantee that for all bounded du, bounded d, and possibly unbounded u, , the error
(X - i) is bounded. Moreover, when du = 0 and d4 = 0 , e: --+ 0. In other words,
for the interconnection in Figure 7 , the error e. must be uncontrollable from u and
the bound on e, must depend only on the bound on the exogenous variable d4 . This
property is the crux of the separation principle, since it simplifies the design problem
to Problem II

it y

EST

Figure 7: Problem I; estimator with (X - i) E L., for all u in Lae and d4 in L(,

"* Problem II : A stabilizing state-feedback law. For bounded dx, du and d4, determine
a controller C, for which the closed-loop signals remain bounded. Moreover, when
d4 = 0 and d4 = 0 , as d. --+ 0 , y -* r . Note that this step is nontrivial since
the controller Co in Figure 6 is typically based on d. = 0 and d4 = 0 . The local
stability properties of the design in Figure 6 may not suffice for the specified bound
on d, obtained from Problem I. With a slight abuse of notation, from now on we will
refer to C1 in Figure 8 as a robust controller, since its design does take into account
the predetermined bounds on d. and dy . The abuse is due to the fact that in the
LTI setting, robustness is attributed to closed-loop signal dependent perturbations,
since exogenous additive disturbances cannot drive a stable LTI loop unstable. Since
local and global stability results merge in the LTI setting and global stability results
are too restrictive in the nonlinear setting, perhaps a better suited description for the
controller C1 in Figure 8 is semi-global ; i.e., for the given bounds on du,d• and d4 the
closed-loop signals remain bounded.

du
r itU

a .

Figure 8: Problem II; dynamic controller C1 , possibly different from Co

13



* Merging Solutions to Problems I and II : Recall that the solution to Problem I
guarantees that bounded deviations about possibly unbounded input output pairs of P
result in bounded e, . Hence one can incorporate Figure 7 in Figure 8 as the bounded
disturbance d. generator to obtain Figure 9

I d y

Figure 9: Candidate controller IC

Note that, in the case that the estimator in Problem I satisfies the property that e, -, 0
for 4 = 0 and dy = 0 , that is when x is asymptotically reconstructed, the choice of the

robust controller C1 in Problem II guarantees that the closed-loop signals remain bounded
due to bounded d. ; in addition, the nominal design constraint on C1 ensures that y - r as

d. -0 .

As a preliminary step towards control design based on state-estimates, the following two
studies show the importance of the choice of the nominal globally stabilizing (or tracking)
control law based on perfect state measurements.

In the first study, set-point asymptotic tracking problem is solved for an output that
exhibits nonminimum-phase zero dynamics. Using dynamic augmentation and then applying
state-feedback asymptotic tracking problem is solved. In other words, the controller Co in
Figure 6 is obtained. The derivations emphasize that the standard Lipschitz constraints, for
ease of Lyapunov based derivations, on the resulting vector fields after possible changes in
coordinates is too restrictive.

In the second study, stability properties of the origin is investigated when the feedback law
is based on estimates from an asymptotic observer. It is shown that the globally stabilizing
exact feedback linearization based controller Co in Figure 6 is no longer globally stabilizing
in Figure 7 . A globally stabilizing controller C1 that solves the Problem II is constructed.
Using the asymptotic observer, the controller IC in Figure 9 is obtained.

14



2.3.1 Example 1: Tracking and Nonminimum-Phase Zero Dynamics

In order to illustrate a strictly causal plant with a one-dimensional possibly nonminimum-
phase zero dynamics, consider the following two-state u to y map.

:i - x 2 + f(xl)
i2 -4(X2 - X1)+U

y X2 -- X

Note that when f = 0 ,the transfer function from u to y is (2)2

It is easy to see that a tracking control based on the coordinate transformation using
derivatives of y will not be stabilizing. Note that

y = 4y +U -X 2 - f(Xl)

For 0=,
u = -4y+x 2 +f(xl)+a(r-y)

results in

(y-r) = -a(y-r)

hence for any a > 0 , y -- r . However, the asymptotic tracking constraint

X2 = X1 + y(O)e'

renders
i x,+f(i) + r + (y()-r)e

Take for example, r 0, f(-) (.)3 . Clearly, in the limit
3

=il = X1 + ±

and the states are unbounded.

When f is zero, it is well known that step inputs can be asymptotically tracked if and
only if plant and/or the compensator have at least one pole at zero. Since ('13 does not
have a pole at zero, the standard LTI design procedure would involve augmentation with
an integrator. Proceed with the same augmentation for the nonlinear plant at hand (see
Figure 10)

r

U+ 

f

X 77

Figure 10: Augmented plant

If x were available, since 7 is part of the controller, the augmented plant states are avail-
able. If one can find a relative degree three output, i.e., solve the state-feedback linearization

15



problem, then 2 -- 0 would imply that y -* r . This requires that the augmented plant
dynamics

i7=r-x 2 +xl

ý1= x 2 + f(xi)
:i2 =4(X 2 -XI)+u

satisfies the controllability and involutivity conditions. Both conditions are satisfied provided
that

f(1)(xi) $ -1

which we will assume for global results. It is interesting to note that this condition is in fact
a generalization to the hidden mode concept in the LTI setting, i.e., if f(xi) = -xi , the
linear plant from u to y would have a hidden unstable mode.

Now consider the relative degree three output

z =7 + xi

motivated by the f = 0 case. Note that

P) = r+xl+f(xi)
z(2) = (1 + f(l)(X1))(X2 + f(xl))

16(xi)

and recall that the (global) controllability condition is equivalent to /3(xl) $ 0 for all
x, C IR . Hence, under the coordinate transformation

S= z(•)

z(2)

the augmented plant dynamics can be put into the controllable canonical form

43 f( 2 ) . (X2 + f) 2 +± (xi)(u + 4(X2 - x,) + f) . (X2 + f))

a~x) + /3(xl)U

where dependencies on x, are suppressed in the f terms, for the sake of brevity. For any ¢,
0 2 and '03 such that the polynomial

s 3 + VJs 2 + 025 + '03

is strictly Hurwitz, the control u determined by

a(X) + O(Xl)U = 03ý1 - 0 2 6 -
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renders • = 0 globally asymptotically stable (recall that the transformation to ý coordinates
is one-to-one and onto) . Hence

0 r + xi•+ f(x1 )

0 = #(Xl)(X2 + f(xl))

and ,3(x 1 ) $ 0 imply that
r + xi - X2 -• 0

i.e., y --+ r . Note that the above exact cancellation based scheme is not the only way to
stabilize the augmented plant in the ý coordinates. In fact, as we will see later on, such
an exact cancellation may make the global nature of the nominal result not robust, i.e.,
perturbations in the states (other than initial conditions) may render the result only locally
stable. Hence, it is crucial that one studies the sensitivity of the full-state based control
design and modify it if possible so that for the class of anticipated disturbances, the local
nature of the control law is satisfactory.

2.3.2 Making the Separation Principle Work

Consider the plant
x = Ax+Bu+F(y)
y=Cx

with (A, B, C) a minimal triple. Suppose that there exists a nonlinear coordinate transfor-
mation

such that the plant can be equivalently represented as

S= Aý + B(u + a(ý))
y = C-V(ý)

For such a system, asymptotic state construction is easier in the x-coordinates, since

X= A+Bu+F(y)+L(y-k)

yields an estimation error e, := x - i , where

,, = (A- LC)e,

The stabilizing control is easier to express in the c-coordinates since

u = -g•-a(ý)

renders • = 0 globally asymptotically stable since the above control yields

= (A- BK)ý

17



The heuristic step of replacing ý by 4(i) can only guarantee local results. For "sufficiently"
small e, ,the estimated-state feedback will be locally stabilizing. The crucial points are how
large the basin-of-attraction is and if it is possible to enlarge it to yield a satisfactory design.

Let 4" . The closed-loop dynamics under the feedback law

u =-K -a(,)

can be expressed as

= (A - BK)ý + W-=_ ( LCe. + F(C-4'-'() + ex)) -F(CV-(ý))

G(4, e.)

6ý = (A- LC)ex

Even if F is Lipschitz (hence IIG(f, e.J)I depends only on 1Ie.I1), M(4) need not be Lips-
chitz. Hence establishing and modifying the basin-of-attraction are nontrivial design tasks.
However, the crucial observation is that the stabilization problem is in fact the robustness
of the full-state feedback law subject to L 2 disturbances.

The following example illustrates the need for a robust state-feedback law and the sensi-
tivity of the exact-linearization based control law.

2.3.3 Example 2

Consider the following one state plant model P : u " y

ý = y,+u

where the goal is to render y = 0 globally asymptotically stable. The perfect state (namely
the plant output) is not available due to an unknown output disturbance d, where d E L2

and d E L,,. The fact that d --- 0 motivates the control law candidate

U = _g -ayg

with a > 0 . We show that such an exact cancellation based control law yields only locally
stable results, whereas choosing a nonlinear control law for the linearized plant significantly
improves the results.

The motivation behind the choice of d above is possible asymptotic estimation error
subject to initial condition mismatches. The over-simplicity of this one-state plant should
not be misleading, since even if y(0) is known perfectly, the estimator built for plants of the
form : = Ax+Bu+F(y) with y available, will not necessarily guarantee zero state-estimation
error. In fact, if one were to build an estimator

. u= y 3 ±+

18



d

U Y

Figure 11: Control under perturbed state measurement

and base the control law on g, by setting d = - y , one obtains

= -d (2)

which implies the L2 disturbance in the plant states (see Figure 11).

Consider the controller of the form

C(a, 0) • g ý- U , U = -ag -fle

for a > 0 and /3 > 1 and the disturbance d as in (2). The dynamics of the resulting
closed-loop system in Figure 11 is described by

S -a(y + d) + y3 -/3(y + d)3  (3)
d= -d (2)

Without getting into extensive simulations to obtain the phase-portraits for different a
and 3 values, it is useful to derive some qualitative properties of (3) and (2) analytically.

For a > 0 and3 > 1, (y, d) = (0,0) is the only equilibrium point. The Jacobian at (0,0)
has eigenvalues -a and -1 , with associated eigenvectors (y, 0) and (y, '-y) , respectively.
Since d(t) cannot change sign, the phase portrait can be decomposed into three invariant
sets: d > 0 , d = 0 and d < 0 ; i.e., the trajectories remain exclusively in the set that the
initial condition belongs to. There is an odd symmetry in the flows since (y, d) and (-y, -d)
satisfy the same differential equations. Hence, it suffices to consider the flow for d > 0 since
d = 0 case is asymptotically stable for all y(O) .

The purpose of the exercise is the choice of the nonlinear control determined by /3
although the basin-of-attraction will be affected by the choice of a , the qualitative properties
for P = 1 and /3 > I are generic. In the following, we will consider the case where a = 1,
(i.e., the eigenvectors are colinear). Let the Lyapunov function candidate be V =1(2 + d2)

Evaluating f/ along the solutions of (3) and (2) , we obtain

1V = (1 - #)y 4 _ •2 _ (1 + 3/3y 2)d2 - yd(1 + 3/3y 2 +/3d 2) (4)

From (4), one can easily deduce the following:

# /3 > 1 V) is eventually negative, due to the dominating first term in (4) . Hence, y
remains bounded for any (y(O), d(0)) . Once d gets sufficiently small , y --+ 0
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* /3 i The first term in (4) drops. The second and third are nonnegative. The last
term changes sign according to (y, d) in the first or second quadrant. Clearly, for any
(y(O), d(O)) in the first quadrant, the volume V decreases, however, the trajectories
might continue into the second quadrant, where the last term becomes positive. We
now show that, finite escape-time behavior is indeed expected for sufficiently large
d(O) . For this specific case, note that (3) becomes

y -y doe - 3y 2 doe-t -3yde 2 e -2t -ed3 - (5)

Considering the quadratic term above, take the approximate solution

Y(t) a (6)

about the approximate escape-time a > 0. Substituting (6) in (5), we obtain

-a -a a2  a 2 -2 3 3t
(t-a)2 (t--a) de-t-3(t-a)2doe- t -a) -o t d

Multiplying both sides by (t - a) 2 and evaluating at a, we obtain

__1

ae-a -

3d0

The above equation predicts possible finite-escape time for do > In fact for
y(O) = -1 and do > 0.8 , simulations indicate finite escape-time behavior in the
second quadrant.
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Appendix A

Appendix A includes a regular paper presented at the 31st IEEE Conference on Decision and
Control, held in Tucson, Arizona on 16-18 December 1992 and published in the Proceedings
of the 31st IEEE CDC pp. 251-256 . Appendix A is self-contained, hence, all section, equa-
tion and figure cross-referencing within these pages pertain only to Appendix A . An abridged
version of the preliminary stages of this work has also been published in the Proceedings of
the 1992 Yale Workshop on Adaptive and Learning Systems.

23



24



1992 CDC

Adaptive Feedback Linearization:
Implementability and Robustness

M. Guintekin Kabuli Robert L. Kosut *

Integrated Systems Inc., 3260 Jay Street, Santa Clara, CA 95054-3309

Abstract

The robustness to parameter mismatch in feedback linearization based nonlinear
tracking systems is investigated. The certainty-equivalence principle gives rise to four
possible feedback configurations: One is the widely used case, where the states are
assumed to be available; two others are observer-based; the last one is a model-follower
based on a feedforward/feedback implementation using a signal generator. It is noted
that the unacceptable transient behaviour of the adaptive tracking scheme is closely
related to the sensitivity of the underlying certainty-equivalence based control, which is
analyzed through a perturbation approach. Simulations are performed on an example
to illustrate the points.
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1 Introduction

Consider the following nonlinear tracking problem:

* For a given nonlinear plant with state-space description

xi f (X, u, )
S=0

y h(x,u,9)

and a given constant reference signal r , determine a feedback law u = C(y, r) such
that the closed-loop system is internally stable and the output y asymptotically tracks
r .

The parameter 0 is clearly uncontrollable. The desired control law has to be expressed in
terms of the measured plant variables ; such control laws will be classified as implementable.
The goal is in fact a robust tracking controller, since performance is achieved despite the
uncertainty in the uncontrollable variable 0 .

When 9 is exactly known, the tracking problem has been solved for special classes of
plants that can be rendered linear under algebraic state-feedback and change of coordinates
(e.g., [Isil] and Section II of [Sasl]).

When 9 is unknown, the widely used approach to design an adaptive tracking scheme is
the certainty-equivalence principle: the tracking problem is solved as if 0 is known and then
the above control is based on the estimate 9 (see [Sasl] and the references therein).

There are two problems with the above approaches. First, the states must all be sensed
variables, which is often not the case; hence the controllers are not implementable in our
sense. Secondly, certainty-equivalence based designs are not guaranteed to be robust, and
hence, the adaptive tracking performance may be unacceptable due to poor transient be-
haviour, a phenomenon well known in the adaptive linear control (e.g., [Andl]).

A solution to the implementability problem is to use an estimate of the state in the
controller. Unfortunately, there is no dual theory of observer design for feedback linearizable
systems. Adaptive controllers based on observers have been obtained in the literature for
specific classes of nonlinear plants (e.g., under output-matching conditions in [Kani]).

Addressing the second problem requires designing a robust nonlinear tracking controller
before any adaptation is introduced. Hence, prior information on the plant description and
the parameter uncertainty are crucial to improve the transient behaviour.

In this paper we consider a special class of nonlinear plants. A direct interpretation of
the certainty-equivalence principle gives rise to four possible feedback configurations.

The first one is the widely used case, where the states are assumed to be available. De-
spite the underlying implementability problem, we address the issue of sensitivity through
a perturbation analysis of the approach. Simulations are performed on an example to illus-
trate the points. Based on this tracking scheme, we derive an adaptive tracking controller.
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Performance of the tracking scheme is illustrated in an example. Although the responses
are bounded, the transients are very large. This unacceptable transient behaviour is closely
related to the sensitivity of the underlying (non-adaptive frozen parameter ") certainty-
equivalence based controller.

The other three approaches are all implementable. The state availability assumption is
dropped at the expense of global results. Two of the schemes use the state-estimate in two
different coordinates. The third is a new model-follower scheme. An example system is used
throughout to illustrate the system behaviour using the four schemes.

2 Plant Description

We consider a class of single-input single-output nonlinear plants which can be exactly input-
output linearized under algebraic state-feedback and change of coordinates. The class under
consideration has no zero dynamics. Specifically, we assume the following:

1. The plant dynamics has the state-space description

S= A x + B u + fo(x) + Fi(x )O (1)
y = cTX

where x E 1R7 is the state, u E JR is the scalar control input, y E JR is the scalar sensed
output.

2. The matrices A and B are in the Brunowsky canonical form. cT := [1 0 0 ... 0 1

3. The smooth nonlinear functions

fo : WRn --* JRW and F1 : -R'-+ * R"xP are known and have the lower-triangular forms

fo(i)(x) = fo(i)(X 1 , X,..., xi) and Fl(i,j)(x) = Fl(ij)(X , X2,..., xi)for i 1,... ,n
I . = 1,..., . p .

4. 0 E IRP is a vector of unknown constant parameters.

2.1 Remarks

For the above plant description, there exists a possibly parameter dependent, coordinate
transformation, ý = 4,(x, 0) , where 4( . , 0) is a diffeomorphism for all 0 . Under the
coordinate transformation 4 , (1) can be equivalently described by

A = A+Bju+go(x)±Gj(x)V + (2)
y = cT(

where the over-parametrization V) consists of entries of appropriate tensor products of 0

The class of plants under consideration are transformable to y(-) = u + go(x) + G, (x)iP
hence, they are state-dependent perturbations of a string of n-integrators.
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For notational convenience, we will refer to the linear part in (2), i.e., the triple (I, A, B)
as the linear plant P . Let

77 x : = g o0(x ) + G i x o(3)

This class of plants satisfies the parametric strict-feedback condition in [Kan2] ; hence,
provided that the state x is available for feedback, one can obtain a globally adaptive tracking
system for the plant in (1) using the procedure in [Kan2].

The class of plants under consideration include the so-called benchmark example , where
n 3, p = 1, fo(x) = 0 and Fi(x) = [f(Xl) 0 0]T , where f(.) is not necessarily Lipschitz in
X1

We will denote "state-x is available for feedback" rather than "state is available for
feedback" , in order to emphasize the specific coordinate the dynamics is described in. Note
that even if state-x in (1) is available, state-c is not available, since it depends on a 0-
dependent transformation where 0 is unknown.

Whenever we refer to a stable map, the map is causal and bounded-input bounded-output
stable (defined over an appropriate extended space). With a slight abuse of notation, a stable
proper transfer function h(s) will be denoted as h in the input-output description where
hG(x) will denote the time-domain waveform obtained by convolving the impulse response
corresponding to h(s) and the signal G(x). Parantheses will be used where ambiguity arises.

Unless specifically emphasized, factorizations denote proper stable factorizations.

2.2 Example

A simple third-order example, satisfying the conditions in Section 2, is used to illustrate
certain points throughout the paper. Consider

S= X2  + 0f(XI)

y = XI

Since we are interested in an input-output approach, all initial conditions in the simulations
are assigned as zero.

Candidates for the function f(-) that we have used are:

* f(xi) = - tanh(Qxl) , motivated by a simple saturating friction nonlinearity. Note
that although f is Lipschitz, the corresponding G1 is not.

* f(xi) = -x2, following the benchmark problem in [Kan2].
• f(x) = -x2/(ax2 + 1).

The function f used in a particular simulation will be emphasized. We introduce the follow-
ing, for future reference.

1 3121 s sJ
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Ix1
(x) = X2 + Of(XI)

X3 + Ox2f(')(xI) + 02f(XI)fM)(xi)

42- Of(4 1)

go(x) := 0

[ xf(2)(XI) I T~()(,

Gl(x) := 2x 2f(X,)f(2 )(Xl) + x 2(f(')(XI )) 2

f(X1)(f(I)(1))2 + f 2(x1)f(2)(XI)

):= [ 02 03 ]T

Note that for this example,

(x) = (f 2)() + f(l)(ý1)6)) (5)
=: G•(M) ,

which emphasizes the issue of overparametrization in different coordinates.

Another observation which becomes useful in the perturbation description is the map
($-V1 - I) , where

6 -2 Ofc(41 )

0

I(M) + (W-0) f(6a) (6)

3 State-x Available

3.1 On Sensitivity of State-x Based Stabilization

The contents of this particular subsection focuses on a slight generalization of the class in
Section 2 , where the input u need not be scalar.

Consider the input u to state-x map described by (1) or equivalently, by (2). Under
a change of coordinates (f) , the input u to state-4 map can be rendered linear under an

algebraic state-feedback F (see (3)) . Hence u to state-x map can be realized as in the
dashed-box in Figure 1 .

The map from v to ý is linear (time-invariant finite dimensional). Let 4 = Pv . Since P

admits coprime factorizations, P = ND-' = DN with [ f7 I [ N V

where all eight maps in the above identity are stable.
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The nonlinear map 1P is stable and its inverse is stable.

The algebraic map F is stable. In fact, for the subsequent derivations in this subsection,
4P and F need not be algebraic.

U2

Figure 1: Stabilizing scheme based on the estimates ?T and

Note that, the input to state-z map in Figure 1 can be expressed as

T = -ND- F"•-N)-' (7)
- D NF-i (8)

where
(U1 + V")(•-N) + - F47-N) = I (9)
(D--F)(q-'V) + (PE)(U+ - -V) I (10)

Note that, (9)-(10) imply that (7)-(8) are in fact nonlinear right- and left-coprime factor-
izations of 1P,, respectively. The equations (9) and (10) also describe a stabilization scheme
based on undoing the nonlinearities, since a stabilizing C :x '- u is given by

C = -K• -F2

where v = -K stabilizes P .

In order to incorporate the 9 dependence in the u to x map, consider in and F- both

functions of 0whereas Pis independent of 0. Note that such an assumption is not restrictive,
since typically the choice of coordinates and algebraic state-feedback is constructed to render
P as a string of integrators (in each channel). From now on, P and its associated terms in
the Bezout-identity will be considered as 0-independent. The 9 dependence in 4? and F-
will be emphasized by introducing the "-versions when they're determined by the parameter
estimate 9.

We now can express the standard stabilization scheme based on certainty-equivalence
approach in terms of the maps introduced so far. Since 9 is not exactly known, the control
law from t to u is realized as

u = K(' -4()) -'() , (11)
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where 4, denotes the desired reference in terms of the state-" (see Figure 1). In other words,
when 0 = 6, the tracking performance is determined by

S= Pv
v = K(ý, -,f)

Note that the tracking scheme in (11) can be equivalently represented by the control law,

ý& = K(', - ý ,

where K is a ',.-tracking compensator for P : v '-+ 4 , and i, " are as shown in Figure 2

Figure 2: Perturbation of P: v under 6 mismatch

Note that the stable feedback perturbation in Figure 2 can be expressed as(.'.-)-,
since x = I'1(•) is available, although • and • are not. As long as the feedback law
from •" to fi is chosen as a linear time-invariant K stabilizing P =ND-1 , one obtains the
precise conditions under which the certainty-equivalence based control law can withstand 0
perturbations. Before stating the conditions, we will adopt the following definition.

• Let K stabilize P (i.e., K =V-'-U and P-=ND-1 ,where UN±VD =1I). K is said to
stabilize th the thperturbedpln in Figure 2 ia te control law "= u2 + K(u. - • yields a
stable (uxu2) =-i za, where z denotes the pseudo-state in Figure 2 (see also Figure 1)

With this definition, one can work out the pseudo-state equation to derive the necessary

and sufficient condition for K to robustly stabilize the perturbed v to ý map, i.e.,

V ('-' )•- ] N )(12)S+ CijI]

has a stable inverse. Note that P can be stabilized using only its first output, i.e., there
exist UJ =: [ U1 0 0 ... 0 ],such that UN + D =I . Hence using a dynamic feedback
compensator of the form K =: [ C 0 0 ... 0 ], C stabilizes P ; moreover, the map in (12)
further simplifies to ( I + fl(?- Y)-I'N ) since c(44-' - I) = 0.

Typical robustness results (small-gain, passivity based sufficient conditions) can be uti-
lized together with assumptions on the nonlinear post-multiplicative and feedback pertur-
bations in (12) (such as sector bounded nonlinearities, linear or multilinear 0 dependence
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etc.) to generate classes of systems for which (12) can be justified. However, we are not
interested in further restricting the set of plants under investigation for the sake of forcing
some sufficient conditions. For the simple example in Section 2.2 , even if the nonlinearity
f(.) is chosen to be globally Lipschitz, the same is no longer true for Y-.

3.2 Sensitivity to eB : Simulation

The example in Section 2.2 with f(xi) = -x is used for the following simulation.

Recall that, since x = x, = y , from (6) , cT($tp1 - I) = 0 . Hence, by choosing a

dynamic compensator C from y to 03, the error introduced by the output multiplicative term
in Figure 2 is avoided.

The compensator C : y F-* 1D is chosen as an R 2-optimal compensator for 1/s 3 for a
particular choice of weights. Throughout the simulations, C(s) = $9.222+340.033s6lo

.s +9.521952+35.33335+66.629,7"

The sensitivity of the closed-loop to eo := 0 - 9 is illustrated as follows: The parameter
0 is chosen as 0 = 1 . For a unit-step reference input the parameter estimate W is perturbed
about the nominal value 1 . When 0 = ", the closed-loop system exhibits the desired
tracking response of a linear system. When 9 is perturbed to 1.0025 and 1.005, the tracking
performance of the loop is shown in Figure 3

3

2.5

2

>4 1.5

.5

o .

0 2 4 6 8 10 12 14 16 18 20

t

Figure 3: Sensitivity of certainty-equivalence based design using state-x for 0 - 1 0 =

1 , 1.0025 , 1.005.

Clearly, within 0.5% relative error, the asymptotic tracking property is lost and the
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system goes unstable. An adaptation law based on this sensitive closed-loop is bound to
exhibit unsatisfactory transient behaviour even if asymptotic tracking is achieved by param-
eter adaptation. Note that, Figure 3 shows the closed-loop responses for frozen W values.
Hence, one should definitely avoid very slow adaptation.

3.3 Adaptation

For the plant description in Section 2 , provided that the state-x is also available for exact
linearization, one can bring an input-output approach to a particular case of certainty-
equivalence based adaptive control design.

We now outline the design procedure:

1. For the class of plants in Section 2 , determine go and G1 , reducing zero columns of
G1 (if any) to cut down vr inecessary overparametrization in . 1

2. Design a stable stabili.7 g compensator C(s) for 1/sn ; i.e., C =: nI/dr, 1/sn =: np/dr
and npn, + drd =- 1 .

3. An adaptive tracking control law candidate is determined by applying the control

S= C(r - y) - go(x) - (Gix)j , (13)

where the parameter estimate j, is updated using the error equation

y- npncr = donp((Gix)ep) , (14)

so that y --4 npn~r . (ep = 0 - j, and r denotes a reference signal that tracks a step
input.)

Note that (y - npner) in (14) denotes the error between the plant output and the ideal
tracking performance (if the nonlinear cancellations were exact) .

Consider the nonlinear plant described in Section 2 shown in Figure 1. For the scalar
input case, let D = d- .

The pseudo-state equations can be written as

4pz = U+go(x)-iGl(x)V)

Nz =

where N and d, are stable; cTN =: np and (np, dp) is a right coprime factorization of 1/sn

Since nP is minimum-phase, npd-' is strongly stabilizable. Hence there exist n,,dc with dc-
stable, satisfying ncnp + dsdp = 1
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Since N is strictly proper, 9 is strictly causal, where

9 = go + (+1(.))'
90z = 90x (15)

g1z = GIX (16)

Hence,
dpz = u + Gz

describes a well-posed u to z map. Since (k and 4-1 are stable maps and (np, dp) is a
right-coprime pair, the plant can be equivalently represented by the following pseudo-state
equation

dpz = u+gz

npZ = y

Note that although z is not available, g0 z and g1 z are available since state-x is available
((15),(16)) .

Hence the plant description from u to y can be expressed as

y ==n d- )_u-

Now apply the certainty equivalence based control law

U =U2 n,(U1 - Y) - 90z - (914)

where u1 and u 2 denote the exogenous additive inputs at the plant input and output in the
standard unity-feedback system, respectively.

For u 2 = 0 , ul = r , where r denotes the desired reference, we obtain

y - npncr = dcnP((9lz)eP)

Since dcnp is minimum-phase, one can utilize an augmented error scheme to update eo .

In order to cut down on the number of states introduced by the filters in the augmented
error scheme, we use the filtered error e. ,

ey := d- 1(y-npncr) (17)

Since nP is minimum-phase, one can adapt 7P using the error form

ell = n•((glz)eo) - (18)

Since (dcdp)(0) = 0 , when cancellation is exact, step inputs can be asymptotically
tracked.

We now derive the update law, based on the error equation in (18) . Since it utilizes the
standard augmented error scheme, we briefly outline the steps.
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Since np is minimum-phase and strictly proper, it can always be expressed as np =: hh2,
where h, is strictly positive real, strictly proper and h 2 is proper stable. Note that h, -
and h2 = (s + 1)np will always work, since np is strictly proper. However, to cut down on
the number of states introduced by filtering by h2 in the augmented error implementation,
it is advisable to factor out a strictly positive real factor of np, instead.

For ease of notation, let W := g 1z . Then (18) can be written as -= hih 2(Wep) . After
adding, subtracting terms and using the fact that ) = 0 , we obtain

-= h((h2W)ev) ,

where 77:= e. - hi((h 2W)4 - h 2(W4,)) . Since hi is strictly positive real, the update law

4 =y(h2W)T7 , _Y > 0

guarantees that 77 E 2 n C, and ep, E C, . Provided that the closed-loop signals are

bounded, W Ew,,; hence, i 0 , ?k -* 0 and e. --* 0 . This concludes that set point
tracking is achieved in the limit provided that the closed-loop signals remain bounded.

3.3.1 Adaptive Tracking Scheme : Simulation

The adaptation scheme above is applied to the example in Section 2.2 for two choices of
f . In both adaptive schemes, the closed-loop signals remain bounded; hence asymptotic
tracking is achieved. However, the transient responses are anacceptable. Note that in both
cases, even without adaptation, state-x based certainty-equivalence control performance was
extremely sensitive to constant parameter errors.

* f(xI) =-x/(ax + 1), a =0.05 , = 10 , reference r = 1 , 0 = 1. This function
approximates f(xl) = -xi reasonably for lxil < 2 . The tracking performance is
shown in Figure 4.

* f(xi) = -tanh(axi) , 0 = -I , a = 4 , -y = 1 , reference r = 0.1 . The tracking
performance is shown in Figure 5.

4 On Implementable Certainty-Equivalence Based
Controllers

Recall that the example in Section 2.2 can be expressed in x or ý coordinates as in (1) and
(2), respectively. Note also that, due to (5), there is no need for overparametrization in the
Scoordinates.

If the parameter vector 0 and either the state x or ý are known, then either the control

"U, = V - Gi(.) (19)
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Figure 4: Asymptotic tracking of r = 1 from zero initial conditions

or, in terms of the state x, the control

U=v- G(X)¢ (20)

provides exact input-output linearization. That is, the system v '-+ y is linear time-invariant,
where

= Ae +Bv
y= t•1

Let C(s) be the same stabilizing compensator (for (cT, A, B)) as in Section 3.2. Hence v
C(r - y) , where r denotes the desired reference, achieves the desired tracking performance
when 9= 0 .

Since the parameter vector 9 and neither state x nor ý are known, it is natural to replace
them in (19) and (20) with estimates ", i, and 4. This is the certainty equivalence principle.
As it does make a difference which observer state is used, we consider them separately. As
in Section 3.2, the following simulations are based on f(xi) = -x'.

4.1 Observer in the State-x
The control law is

= (A LcT):i + Bu+ FI()+ Ly (21)

u= v - Gi(: ,

where (A - Lc T) is strictly Hurwitz. Since all simulations are performed with zero initial
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Figure 5: Asymptotic tracking of r 0.1 from zero initial conditions

conditions, provided that 9 , the nominal performance is identical to that of the linear
equivalent.

The sensitivity of the closed-loop to e8 := 0 - 9 is illustrated as follows: The parameter
0 is chosen as 0 = 1 . For a unit-step reference input the parameter estimate 0 is perturbed
about the nominal value 1 . When 9 is perturbed to 1.1 and 1.2 , the tracking performance
of the loop is shown in Figure 6 .

4.1 Observer in the State-s

The control law is

ý = (A - LcT• + B[u + W"G ')] + Ly (22)

where (A - LcT) is strictly Hurwitz. Since all simulations are performed with zero initial
conditions, provided that 0 = 9 ,the nominal performance is identical to that of the linear
equivalent.

For a unit-step reference, W is perturbed 1.25, 1.5, 1.75 and 2 ; the tracking performance
of the loop is shown in Figure 7
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Figure 6: Sensitivity of certainty-equivalence based design using the estimate of state-z for 0 1
0= 1 , 1.1 , 1.2.

4.2 Model-Follower

This feedback-feedforward control scheme is based on a locally stable unity-feedback system.
For the given nonlinear plant P : u 1-4 y , let Cp(s) locally stabilize the plant in the unity-
feedback system about the reference r . A model is used to generate the feedforward signals.
The model is a copy of the plant description, where 0 is replaced by 0. Since all states are
available for this model, exact linearization can be performed. Let C(s) be the compensator
that is being used so far in the previous three certainty-equivalence based designs. Subscript-
m denotes the model variables.

The control law is (see Figure 8)

' =A4,,, + Bv..

ym = c" •,,,

vtm = C(r - ym) (23)

U = U,. + CP (ym-y)

For the specific example, Cp = C achieved local stabilization about the unit-step reference.
0 is perturbed to 1.25, 1.5, 1.75 , 2 , 2.5 , 2.75 and 3 ; the tracking performance of the loop

is shown in Figure 9 . Note that this scheme exhibits the least sensitive tracking design.
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Figure 7: Sensitivity of certainty-equivalence based design using the estimate of state-a for 0 1
0 = 1, 1.25 , 1.5 , 1.75 , 2.

5 Concluding Remarks

An input-output approach has yielded some insight into robustness of feedback linearizable
schemes under parameter mismatch. Our simulations of adaptive nonlinear systems show
a phenomenon familiar in adaptive linear systems. Namely, even though the system is
theoretically globally stable, the transient can be quite large. The problem is inherent in the
parameter sensitivity of the system when the adaptation is frozen. The observer-based and
model-follower schemes are most likely more robust to parameter changes then the full-state
available scheme, which in general, is not implementable unless the states are measured.

Figure 8: Model-follower described by (23), where £(vm,,•m) := v, - Oi(E,•)
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Figure 9: Sensitivity of the model-follower based certainty-equivalence design for 0 = 1 , B =
1 , 1.25 , 1.5 , 1.75 , 2 , 2.5 , 2.75 , 3.
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Appendix B

Appendix B includes a regular paper submitted for possible presentation at the 1993 Au-
tomatic Control Conference to be held in San Francisco, California. Appendix B is self-

contained; hence, all section, equation and figure cross-referencing within these pages pertain

only to Appendix B
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Abstract

An input-output approach is used to investigate stabilization of a class of nonlin-
ear plants that can be rendered linear time-invariant under nonlinear stable dynamic
feedback. Results are obtained for the standard unity-feedback configuration subject
to bounded disturbances. It is shown that the design method based on applying the
inverse transformation on any stabilizing controller for the transformed linear time-
invariant plant, does not necessarily yield a stabilizing controller for the nonlinear
plant. Conditions under which the method is justified are derived.
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1 Introduction

Due to the relative ease of solving control problems associated with finite-dimensional linear
time-invariant (LTI) plants, the class of nonlinear plants that can be rendered LTI by al-
gebraic state-feedback has received considerable attention in the literature (e.g., [Isil, Sasl,
Kanli and references therein) . This transformation based approach provides one of the
few systematic means of designing nonlinear control laws and has been applied to numer-
ous research problems involving stabilization, tracking, adaptive stabilization and adaptive
tracking. While most of these applications might be valid nominal design approaches, the
stability of resulting closed-loop systems subject to plant uncertainties and/or disturbance
models has not received comparable attention.

Towards the goal of establishing robust control design methodologies for classes of nonlin-
ear plants, a crucial step is guaranteeing stability when the system is subject to persistently
exciting bounded disturbances and determining bounds on such disturbances for which sta-
bility is guaranteed. In other words, design methods and the subsequent analyses must be

able to justify stability (be it local or global) in the presence of sensor and/or actuator noise,
even before bringing in more demanding robustness to plant uncertainties.

In this paper, motivated by the class of nonlinear plants that can be rendered LTI under

nonlinear algebraic state-feedback, we focus on a particular class of nonlinear plants that
can be rendered LTI under nonlinear stable, possibly dynamic, feedback. We study the
stabilization of this particular class of nonlinear plants. The study is based on an input-

output framework, where the closed-loop results are stated for the standard unity-feedback
configuration subject to bounded actuator and sensor disturbances [Des].

The results are organized as follows. The relationships between the graphs of the nonlin-
ear plant and its transformed LTI counterpart are derived; the fact that the bounded input-

output pairs of the two maps are related by stable maps motivates the generally adopted
design procedure based on undoing the nonlinearities, which consists of the following steps:

1. transform the nonlinear plant to an LTI one,

2. design a stabilizing controller (possibly nonlinear) for the LTI plant and

3. using the inverse transformation and the designed controller for the LTI plant, deter-
mine the transformed controller for the nonlinear plant.

It is shown that this straightforward three step procedure is not a unified stabilizing control
design method for the class of plants at hand when the plant is subject to bounded actua-
tor/sensor disturbances . In other words, given any member of the particular class of plants
under study, taking the three steps mentioned above does not necessarily guarantee a sta-
bilizing controller. As might be expected, the problem arises due to the second step of the
design procedure, since it inherently assumes that the design for the transformed LTI plant
and the nonlinear plant are separate problems. In other words, any stabilizing controller
for the LTI plant may not yield a stabilizing controller in the third step. Subsequent results
formalize this issue and state conditions under which such a design approach is justified.
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While the notion of incremental stability, which generalizes the properties of linear stable
maps, can be easily imposed to guarantee sufficient conditions for the method to work in
general, the extreme conservatism in expecting any controller in the second design step to
work is shown by establishing that incremental stability has to be necessary , as well. Unless
such restrictions happen to be satisfied for the specific problem at hand, all of these cau-
tionary results imply the following: The design problem for the transformed LTI plant need
not be decoupled from the original nonlinear design problem; hence, one should not rule out
intentionally nonlinear controller design for the transformed LTI plant. Although this might
seemingly defy the purpose of the transformation, since the transformed design problem is
yet another nonlinear control design problem, it also emphasizes the need for more results
in nonlinear control design for LTI plants, before nonlinear plants are transformed to linear
ones. Moreover, despite the global linearizing transformation, one might end up with only
a locally stable interconnection. Simple examples with analytical derivations are used to
emphasize the points.

1.1 Notation and Preliminaries

e All nonlinear maps in this study are causal, multi-input multi-output and defined
over appropriate products of extended LOO[0, oo) spaces. For a thorough treatment of
general extended spaces within the input-output approach to nonlinear systems, see
e.g., [Des1] . For notational convenience, for functions from lR+ to IWR , the associated
set of bounded signals and the extended space will ve denoted by L- and Looe,
respectively.

While most of the observations in this study do generalize to other extended spaces, the
particular choice of sup bounded functions on IR+ is motivated by studying the stability
properties of nonlinear interconnections subject to persistently exciting disturbances.

An ni-input no-output causal nonlinear map P will be considered as

P : U c L --* Looe I

where 1 denotes the domain. The extended space is a means of incorporating un-
bounded signals in the study; however, one must note that although L.. C Loo. ,
(Lo,)C \ Lo, $ 0 , where (.)C denotes the complement of the set with respect to the
set of all functions on IR+ . The nonempty intersection arises due to discontinuities
which are not jump-discontinuities. The scope of the extended spaces do not cover
signals which exhibit "finite escape time"; hence the plant description over a strictly
proper subset of the input extended space might be necessary. Hence, L', describes the
set of bounded signals and Loo, \Loo denotes the set of unbounded signals (unbounded
at infinity).

Calligraphic capital letters will be used to denote nonlinear maps. Italic capital let-
ters will denote linear time-invariant maps that admit finite-dimensional state-space
descriptions; for this class, with a slight abuse of notation, the map and its associated
transfer function representation will be used interchangeably. In the case that italic
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letters are used for nonlinear algebraic maps, parantheses will be included to emphasize
the evaluation (i.e., Ax vs. F(x)) . For two nonlinear causal maps .F and g the map
.Fg will denote the composition of the two maps.

"* In an input-output approach to the analysis and design of nonlinear interconnections,
the notions of boundedness and stability are crucial for subsequent results. Unlike the
finite-dimensional linear time-invariant case, most of these properties depend on the
particular framework. The following four definitions set up the particular framework in
this paper. For a treatment of related topics in fractional representations of nonlinear

casual maps and stability of nonlinear interconnections see e.g., [Haml, Verl, Vidl,
Kabl] and references therein.

"* The set of all input output pairs of a given map does admit a special partitioning which
exhibits particular properties.

Definition 1 (graph of 1P, 9(P))
For a given map P :• C L'i, - L'O, the graph of 7P is denoted by G(P) , where

(P = ux T(U)

Moreover, !9(P) admits the following unique partitioning

9(P') = UB (X(U)) U UB X (P(U))M U Uu x (M(U))B U UU × (X(U)) ,

QBB(P) GBu(P) GUv(P) Cuu(P)

where the subscripts B and U denote the bounded and unbounded components, re-
spectively.
0

In the bounded and unbounded partitioning of G(P) , gBB(P) denotes the desired i/o
pairs, GBu(P) describes the instabilites of the plant ("unstable poles") and gUB(P)
describes the instabilites in the inverse relation ("unstable zeros") . Clearly, a feedback
system stabilizes P subject to bounded disturbances if and only if the closed-loop
generates plant i/o pairs in gBB(P) • In other words, gBB(P) must be nonempty. For
example, for the particular map P from u to y where

y = I+u,

has GBB(P) = , hence there cannot exist any stabilizing scheme.

a Unless specifically emphasized, maps are not considered to be stable or algebraic.

Definition 2 (stable)
A causal map-- L +e L'- is said to be stable iff there exists a continuous

nondecreasing qi :R+ -+ lR+ such that IIl-ull _< .n(Iiull) for all u e L, .
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For a stable map H ,
- QBB(t) = L" x -(L")

- gBUs() = 0,

- gUB(H"I) may or may not be empty.

Definition 3 (unimodular)
causal map R : Loi, --+ Looe is said to be unimodular iff 7- is stable, bijective and

R--1 is stable.
0

For a unimodular map 7-
- 9BB(-H)= Li x Lx,

00 00~

- 9BU(7H) = 0,

- 9UB(7) = 0,
-guu() = (L= \LN) x (Lne\L ),

Definition 4 (incrementally stable)
causal map 7-R : Lni, - Lnoe is said to be incrementally stable iff 7 is stable and

there exists a continuous nondecreasing OH : IR+ --p IR+ such that for all u E Lne
IIH(u + v) - full _< •(llvfl) for all v E Lni00

For an incrementally stable map, bounded deviations in the input result in bounded

deviations at the output. The bound on the output deviation is independent of the
nominal input signal u.

In the case of an algebraic incrementally stable map 7-f where the bounding function
0,H is linear, the algebraic nonlinearity 7-f is also referred to as Lipschitz continuous.

"* From now on, the words bounded and stable will be interpreted in the sense of Lo,,•

"* The nonlinear unity-feedback system S(P,C) denotes the interconnection

y = Pu

U = UI - C(u 2 +y)

where ul and U2 denote the exogenous inputs perturbing the actuator and sensor signals
u and y , respectively (see Figure 1) .

"* The feedback system S(P,C) is said to be stable iff the map from (ul,u 2) to (u,y) is
stable.

Note that the stability of S(P, C) requires that the closed-loop map exists and it is
stable. The well-posedness condition that ensures the existence of the map is almost
always satisfied in practice, since P and/or C are strictly causal.
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2 A Class of Feedback Linearizable Plants

Definition 5 (L)
A causal nonlinear plant P is said to belong to the class L iff there exist a unimodular map
M, a linear time-invariant map P with a finite-dimensional state-space representation, and
a stable map .T such that

P = .M'-P(I-.M-M'P)- . (1)

In order to emphasize the particular triple (M, P, •F) used, equation (1) will bc denoted by

-P = C(M, p,.-)

Note that if P = 2(M, P,Y9) (see Figure 1), the map from u to y can be expressed as

P.My = Pv
7:' u , y V = U + .Ty

Applying the stable output-feedback

the map from f to My is rendered linear. Clearly, for a given P E L , the triple (M, P, F)
is not uniquely determined. The well-posedness of the feedback loop in the description of P
is inherently assumed by the existence of the map from u to y ; in general, strict causality
of P and/or F suffice for well-posedness of the feedback loop in £(M, P, -) .

This particular class of nonlinear plants in Definition 5 is in fact motivated by the special
class of nonlinear plants that can be put in the controllable canonical form

- f(x)+Bu

= A( + B(u + F(x))

where 4 is an algebraic change of coordinates and F is an algebraic stable map. Note that
for this particular case, y = x , My = 4P(y), Fy = F(y) and P = (sI - A)-'B

For plants in L , the linear part P admits coprime factorizations; let

P - ND- = -N (2)

with the Bezout identity

D N D 
(3)
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where all of the eight maps are stable. By linearity, stable maps are also incrementally
stable. Note also that for the description in (2) for a full rank P , the numerators drop
rank at the zeros and the denominators drop rank at the poles. Since P is not necessarily
single-input single-output, poles and zeros (except blocking zeros) may coincide. Since it is
easier to describe the unstable zeros and unstable poles of P due to the transform algebra,
one can easily describe the partitions gUB(P) and gBu(P) . The following result establishes
the connection between the graphs of P and P E £

Fact 6 (on graphs of P and 7)
If P = L(M4, P, .F) , then there exists a unimodular map T such that

1. SBB(P) = TGBB(P),

2. guB(P) = TgUB(P).

Proof: See Appendix.

Note that Fact 6 establishes that the desired i/o pairs and the unstable dynamics of the
inverse relations are related in the graphs of P and P . Such a simple description between
the rest of graph partitions cannot be established in general.

We now consider the stabilization of plants in £ ; i.e., determining a causal nonlinear
map C such that the feedback system S(P,C) (see Figure 1) is stable.

-- - - - - - - - - - - -----

Figure 1: Feedback system S(P,C)

The existence of a transformation of P to a linear P , and Fact 6 suggests stabilization
schemes based on designing controllers for P . The following conjectures emphasize this
design approach.

Conjecture 7
For a given P = C(M, P,.F) , if S(P, Cp) is stable then S('P,(CpM + F)) is stable.
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Conjecture 7 is based on the design method of undoing the nonlinear maps .F7 and M
which consists of the following steps:

1. transform the nonlinear plant to an LTI one,

2. design a stabilizing controller (possibly nonlinear) for the LTI plant and

3. using the inverse transformation and the designed controller for the LTI plant, determine
the transformed controller for the nonlinear plant.

Conjecture 8
For a given P = C(M,P,F), if S(P, C) is stable then S(P,(C - F)M-1) is stable.

If Conjectures 7 and 8 were in fact true, one would end up with a necessary and sufficient
condition for stabilizing plants in 12 by merely using the transformations and nonlinear
controller design methods based on linear plants. We now investigate these conjectures and
state conditions (other than trivial cases like P = P = 2(1, P, 0)) , under which related
results can be established.

3 Stabilizing Feedback Linearizable Plants

The following fact (see e.g., [Kabl]) describes the set of all nonlinear stabilizing compensators
Cp in S(P, Cp)

Fact 9 (S(P))
Let the causal linear map P satisfy equations (2) and (3) . Under these assumptions, the
feedback system S(P,Cp) is stable if and only if Cp G 8(P), where

S(P) = {(U+DQ)(V-NQ)-l I Q is stable and

(V - NQ) is bijective with a causal inverse}

The following Lemma justifies the design approach in Conjecture 7 for a special subset
of plants in/f .

Lemma 10 (A Sufficient Condition for Stabilizing C2(M, P,.F))
Let P = C2(M, P,.F) , where the maps F and M are both incrementally stable. Under these
assumptions, if S(P, Cp) is stable then S(P, (CpM + F)) is stable.

Proof: See Appendix.

The existence of a unimodular map that relates the desired input output pairs of P and
"P (see Fact 6-1) , is the main motivator for Conjectures 7 and 8 . The second part of Fact 6
relates the "unstable zero dynamics" of P and P . For a precise description of the notion
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of zero dynamics in nonlinear systems that extend the well-known case in finite-dimensional
linear time-invariant maps, see [Isil] . Unlike the motivating controllable canonical form
derivation, the class of nonlinear plants in £ can have "unstable zero dynamics" . In fact,
Lemma 10 does apply to such cases since one can easily stabilize P with unstable zeros. The
advantage of the class £ is to take the stabilization concept of algebraic-feedback lineariz-
able systems under full-state feedback (which relies on constructing an output that has the
sufficient relative degree to avoid "zero dynamics") to a larger class where the input output
map already has "unstable zero dynamics" . The virtue of Fact 6-2 is that one does not need
to determine the stability properties of the "zero dynamics" of the nonlinear map P , which
is a highly nontrivial task.

We now present a counterexample to Conjecture 7

Example 11
Consider the single state plant model P from u to y described by

y=Y 2 + U.

Note that P £(I, 1/s,()2). Choose Cp = I E S(P) . For C =CpM +.F"= I + ()2, the
closedloop system S(P, C) is described by

P = -(Y+U2)+Y2-(Y+U2)2+U1

Clearly, for u2 = 0 , the closed-loop map from ul to (u, y) in S(P, C) is stable. However,
for u2 $ 0 , the closed-loop system S(P, C) is not stable. To see this, consider ul = 05 and
U2 = 82 where Si = 0 , i = 1, 2 . In other words, under constant sensor and actuator bias,
the closed-loop system is described by

S= -(1+ 2 82)y + 61 - 62 - 52

Hence, for 62 _< -0.5 , the output y is not bounded.
0

Example 11 emphasizes the importance of checking the closed-loop map from (Ui,U 2)
to (u,y) , rather than just ul to (u,y) . The same example also illustrates the effect of
estimated state feedback and how the lack of a separation principle for nonlinear systems
renders the design procedure heuristic, which happens to fail for this particular case. When
an estimator with steady-state bounded bias is introduced in the ideal state-feedback, the
closed-loop is no longer stable.

The problems with Conjectures 7 and 8 are mainly due to ignoring the exogenous input
U2 , and relying on the following fact.

Fact 12 (Conjectures 7 and 8 under no measurement noise)
For a given P = (M, P,.F)

S(P, Cp)12 =0 is stable - S(P , CpM + =0)Iu2 O is stable

51



The instability mechanism in Example 11 can also be used to establish the lack of perfor-
mance robustness under finite-energy disturbances, where ul and u2 -- 0 . Given any bound
on the amplitude of y , there exists a finite-duration disturbance (hence finite-energy) such
that the closed-loop output exceeds this bound before asymptotically reaching zero.

We now state the main result that shows the conservatism of basing the stabilization of
'P on the stabilization of P . The following theorem establishes that Conjecture 7 is not true
in general and that incremental stability is of paramount importance.

Theorem 13 (Conservatism of Conjecture 7)
Let 7P = L(.M, P,.F) with A4 incrementally stable. Under these assumptions,
S(P, (CpMA4 + .F)) is stable for all Cp E S(P), if and only if F is incrementally stable.
Proof: See Appendix.
0

Note that Theorem 13 emphasizes that the design procedure is no longer decoupled
(namely first stabilize P and then apply the transformed controller to 7P) if the incremental
stability of F fails. When incremental stability fails, Theorem 13 does not imply that there
does not exist a compensator for P for which Conjecture 7 is valid. On the contrary, the
selection of Cp is crucial as emphasized in the following example.

Example 14
Consider the plant P in Example 11 . Choose Cp = I + (.)3. Note that Cp E S(1/s) (see
Appendix) . Apply the heuristic design procedure in Conjecture 7 , i.e., choose C = CpM4 +
F . The closed-loop system S(p, I + (.)2 + (.)3) is stable (see Appendix)

In order to show how restrictive it is to impose M and F are both incrementally stable,
consider the following example.

Example 15
Consider the map P from u to y described by

XI• = X2 + f(xI)
;i2 = X3

i3 = U

X(0) 0 o

where the algebraic nonlinearity f is bounded, i.e., there exists a k > 0 such that If(x)l < k
for all x 6 JR. Clearly, f(-),is stable and incrementally stable. Moreover, for any linear time-
invariant finite-dimensional C such that S(1/s 3 [1 s s2 1T, C) is stable, the interconnection
S(P, C) is stable. Now consider the plant P in terms of the canonical form £ . Provided
that f is at least twice differentiable, under the coordinate transformation

X X2 +- x f(XI)]

x 3 + X2f(')(XI) + f(xl)f(')(xl)
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and algebraic feedback

2x = X22f( 2)(XI) + x 3f(')(Xl) + 2x 2f(xl)f(2 )(xl) +

X2(fm('I))2 + f(xi)(f(')(xl))2 + f2(Xl)f(2)(Xl)

one has

=: £(M, 1• 1 , F)

Clearly, M is unimodular and F is stable. However, unless f( 2) vanishes, F is not incremen-
tally stable.

4 Conclusion

In the course of bounded-input bounded-ouput stabilization of nonlinear plants, those that
can be transformed into an LTI one are of particular interest due to a vast pool of theoretical
and computational tools associated with LTI design problems. The existing transformation
immediately suggests a simple design approach: design a stabilizing control law for the
transformed LTI plant and then use the transformed control law for the nonlinear plant.
As it is shown in the study, such an approach is not a sure design procedure unless more
restrictions are imposed on the transformation. The design for the transformed LTI plant
is really not decoupled from the original nonlinear design problem; hence, one should not
rule out intentionally nonlinear controller design for the transformed LTI plant. Although
this might seemingly defy the purpose of the transformation, since the transformed design
problem is yet another nonlinear control design problem, it also emphasizes the need for more
results in nonlinear control design for LTI plants. Along this line, for a given LTI plant, one
has a complete parametrization of all nonlinear stabilizing controllers ; however, the choice
of the parameter subject to a particular cost is not straightforward. Another approach is
based on optimal control with non-quadratic integrand cost criteria from which nonlinear
state-feedback laws are derived.

5 Appendix

Proof of Fact 6

Let P = C(M, P,F) . From Figure 1 , the equations relating the (u, y) pair and (v, Pv)
pair define the m ap 7" as follows: P 'M - V

T(v,P v) = (u,y) = (v -FM-Pv,M-pv)
(v,Pv) = T-'(u,y) = (u+F2y,My)

Since F is stable and M is unimodular, T defined above is also unimodular. By unimodu-
larity of T

(u,y) E gBB(P) (v, Pv) E gBB(P)
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which establishes Fact 6 1)

Let (u, y) E guB(P) . Since M is stable, Pv = My is bounded. Since u is unbounded
and 37M-'Pv is bounded, v = u + FM'-Pv is unbounded. Hence (v, Pv) E 9UB (P) •
Similarly, v unbounded, Pv bounded imply y bounded and u + Fy unbounded, hence u is
unbounded. This establishes part 2)
El

Proof of Lemma 10

By Fact 9 ,the stability of S(PCp) implies that Cp = (U + DQ)(V - NQ)-1 , for
some stable Q . Any input output pair corresponding to the map Cp can be expressed
as the pair ((V - NQ)ý, (U + DQ)ý) , where ý denotes the pseudo-state of this particular
factorization. For this particular factorization, the input output pair of Cp is bounded if and
only if ý is bounded. Moreover, since F, M and M-1 are stable, the closed-loop system
S(?, (CpM + F)) is stable if and only if the closed-loop map from (ul, u 2) to ý is stable.
Writing the equations describing the feedback system S(P, (CpM + F7)) in terms of ý, we
obtain (see Figure 1 and equation (2))

DMy = N ( u1 + .Fy -F(u 2 + y) - (U + DQ)) (4)
(V - NQ)ý = M(u2 + Y) (5)

AddingDM(u 2 + y) to both sides of (4), substituting (5) and (3) and using the linearity of
N and D , we obtain

S= Nul - N(F(y+ u 2) - 7y) + D(M(y + u 2) - My)

Clearly, if F and M are incrementally stable, ý is bounded for all bounded ul and u2 . El

Proof of Theorem 1

"if" Follows by Lemma 10.

"only if" Follows by Example 11 , by setting M = I, P = I/s, F = (.)2 and Cp = 1

El

Proof of the claim in Example 14

The closed loop system S(1/s, I + (.)3) is described by

S= U- (X + U2 ) - (X+U 2 )

The closed-loop system S(p, I + (.)2 + (.)3) is described by

=u, + x2 - (x+u 2 ) - (x+u 2 )2 - (x+u 2 )3

For ul and ui2 in Lo, , using the Lyapunov function candidate V(x) = X2 , in both cases
for fxj sufficiently large V along the solution trajectories is eventually negative. Hence the
closed-loop map from (u, u 2) to (u,x) is stable in both cases.
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